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Abstract
In recent years, the popularity of graph databases has grown rapidly. This paper focuses
on single-graph as an effective model to represent information and its related graph
mining techniques. In frequent pattern mining in a single-graph setting, there are two
main problems: support measure and search scheme. In this paper, we propose a novel
framework for designing support measures that brings together existing minimum-
image-based and overlap-graph-based support measures. Our framework is built on
the concept of occurrence/instance hypergraphs. Based on such, we are able to design
a series of new support measures: minimum instance (MI)measure, andminimum ver-
tex cover (MVC) measure, that combine the advantages of existing measures. More
importantly, we show that the existing minimum-image-based support measure is an
upper bound of the MI measure, which is also linear-time computable and results
in counts that are close to number of instances of a pattern. We show that not only
most major existing support measures and new measures proposed in this paper can
be mapped into the new framework, but also they occupy different locations of the
frequency spectrum. By taking advantage of the new framework, we discover that
MVC can be approximated to a constant factor (in terms of number of pattern nodes)
in polynomial time. In contrast to common belief, we demonstrate that the state-
of-the-art overlap-graph-based maximum independent set (MIS) measure also has
constant approximation algorithms. We further show that using standard linear pro-
gramming and semidefinite programming techniques, polynomial-time relaxations for
both MVC and MIS measures can be developed and their counts stand between MVC
and MIS. In addition, we point out that MVC, MIS, and their relaxations are bounded
within constant factor. In summary, all major support measures are unified in the new
hypergraph-based frameworkwhich helps reveal their bounding relations and hardness
properties.
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1 Introduction

Graphs have become increasingly important in modeling complicated structures, such
as chemical compounds, bimolecular structures, social networks, aviation maps, and
the Web. Recent years have witnessed intensive studies on mining graph databases
for interesting patterns. Such endeavors often involve calculating the frequency of the
identified patterns (i.e., subgraphs). As shown in many problems, frequent patterns
are believed to reveal essential features of the system modeled. A clear definition
of any frequent pattern mining problem depends on a support measure as a notion
of the frequency of the patterns of interest.1 In a transaction-based frequent pattern
mining setup, the development of a support measure is straightforward as we only
need to count individual graphs (in a graph database) that contain the query pattern.
The problem is more interesting and challenging in a single-graph setup, in which
the frequent patterns are to be found in only one graph that often consists of a large
number of vertices and edges.

The design of a support measure is non-trivial in the single-graph environment as
the measure has to fulfill several requirements. For example, an obvious definition
of support of a pattern is the number of its occurrences in the input graph (see more
details in Sect. 2). However, this definition possesses a feature in that the support
may increase when extending a pattern with more edges/vertices. It is not hard to see
such feature is undesirable: when a query pattern grows, the search becomes more
selective thus the support should decrease. First introduced by Vanetik et al. (2002),
anti-monotonicity is well accepted by the graph mining community as an essential
rule for support measure design. Vanetik et al. (2002) also proposed an anti-monotonic
support measure called themaximum independent set (MIS) support. The MIS is built
on an important concept named overlap graph, which is a graph that consists of the
instances of the query pattern in the original graph (database) as vertices and the
overlap of such instances as edges. The main problem of MIS is the lack of efficient
algorithms—it is proved to be NP-hard.

Another design of support measure named themininum-image-based (MNI) sup-
port (see Bringmann and Nijssen 2008 for details) is based on the technique of vertex
images. Being another anti-monotonic support, MNI requires only linear time to com-
pute. The MNI support, however, has serious drawbacks due to its overestimation of
independent occurrences by ignoring the topological structure of the query pattern and
partial overlap of occurrences. This lowers its value in real applications. The overlap-
graph-based support (represented by MIS) and MNI support, as well as their variants,
represent the twomajor bodies of work in defining support measures in frequent graph
mining.

Motivation While both MIS and MNI are anti-monotonic, they stand on opposite
sides of the spectra of overestimation and efficiency. Therefore, the main objective
of this study is to set up a new framework that unifies existing two categories of
support measures, and such a framework serves the following purposes: (1) we can
better understand existing support measures (with improved hardness and bounding

1 For that, we use the words frequency and support interchangeably in this paper. We also use the word
support and the phrase support measure in the same way.
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Table 1 Table of notations

MI S Maximum independent set measure

MI ES Maximum independent edge set measure

MN I Minimum-image-based measure

MI Minimum instance measure

MVC Minimum vertex cover measure

RMVC Polynomial-time relaxation of minimum vertex cover measure

RMI ES Polynomial-time relaxation of maximum independent edge set measure

σ∗ Value of measure ∗

theorems); (2) we can build new support measures that combine the best of the two
worlds: they are fast (with linear/polynomial time), avoiding the high cost of computing
MIS support measure, and avoid over-estimation, without over counting patterns as
MNI; and more general, (3) we could develop a good number of choices spreading
out the domains of support counts and computational efficiency to allow users choose
the proper measure. For example, users can choose a measure, depending on the
dataset characteristics (e.g., sparsity, label diversity of data graph) and computational
resources (e.g., the time she is willing to wait). Hence there are urgent needs to fill
such a gap among existing measures MIS and MNI (Table 1).

In this paper, we first introduce the concept of occurrence/instance hypergraph,
which is a graph built on the occurrences or instances of the pattern.We show that there
is a natural mapping of MNI in the hypergraph setting. As to the MIS, we show it is
equivalent (in both value and computational complexity) to a support measure defined
from the occurrence/instance hypergraph, the maximum independent edge set sup-
port (MIES). We explain that overlap-graph-based MIS is equivalent to MIES in the
hypergraph framework. We also discuss the differences between the new hypergraph
framework and overlap hypergraph introduced by Wang and Ramon (2012).

Based on the hypergraph concept, we define new support measures: theminimum
instance (MI)measure in Sect. 3.3, and theminimum vertex cover (MVC)measure
in Sect. 3.4. For the MI support measure, we show that the existing MNI support is its
upper bound, or in other words, MI is closer to the MIS support of a pattern than the
MNI. Same as MNI, the MI support is also linear-time computable. TheMVC support
returns frequency that is even closer to MIS. Although computing MVC measure is
NP-hard, MVC enjoys a k-competitive approximate algorithm. We disccuss the rela-
tionship between MVC and a overlap-graph-based measure named MCP proposed
by Calders et al. (2008) in Sect. 3.4.1. Furthermore, we provide polynomial-time
MVC (RMVC) and polynomial-time MIES (RMIES) relaxations for MVC and
MIES respectively. This makes MVC and MIS/MIES more efficient while still pro-
viding meaningful frequency values. Bounding theorems that describe the differences
among all support measures included in the hypergraph-based framework are also
presented. It shown in Bringmann and Nijssen (2008) that

σMIS ≤ σMNI.
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Fig. 1 An example showing support measures of one pattern and a data graph as well as the occurrence
hypergraph. In this case, we have σMI S = σMI ES = 3 ≤ σMVC = 4 ≤ σMI = 5 ≤ σMN I = 6

Table 2 Complexity of measures

Measure MI S, MI ES, MVC RMI ES, RMVC MI , MN I

Complexity NPH const-approx Polynomial Linear

In the hypergraph framework, the bounds of all aforementioned support measures are
as follows:

σMIS = σMIES ≤ σRMIES = σRMVC ≤ σMVC ≤ σMI ≤ σMNI.

As an example, Fig. 1 illustrates the hypergraph framework and displays counts of
support measures of a one-edge pattern in a small data graph.

The computational complexity of all measures is summarized in the following
Table 2.

When modeling pattern occurrences/instances as hypergraphs, an essential finding
about pattern occurrences/instances is revealed: the hypergraphs of interest belong to
a special group called uniform hypergraphs instead of general hypergraphs. From this
finding we show that if a pattern has k nodes, overlap graphs of pattern occurrences
(instances) are actually in a subcategory of so called (k + 1)-claw-free graph, and the
MIS support can be approximated within a constant factor. In k-uniform hypergraphs,
the ratio between MIES and MVC is within constant k. Although the standard linear
programming (LP) and semidefinite programming (SDP) relaxation ofMIS are studied
in overlap graphs (Calders et al. 2008), to our best knowledge we are the first to study
them in uniform hypergraphs. We discover that if the LP relaxation of MIES and SDP
relaxation of MIS can be used to derive new polynomial-time measures in hypergraph
framework, then the measure derived from the SDP relaxation will be strictly stronger
than the one derived from the LP relaxation and the integrality gaps of LP and SDP
are k − 1 + 1

k and k+1
2 respectively.

In addition, we analyze the concepts of overlap such as harmful overlap (HO) in
Fiedler and Borgelt (2007) and present potential applications of them in designing and
improving support measures in hypergraph framework. We shall give a theorem prov-
ing that only same-label node subsets are necessary for effectively counting minimum
number of node subset images. From this theorem we develop a new linear-time sup-
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port measure named harmful overlap minimum instance based support (HO-MI)
and show that the value of HO-MI falls between MVC and MI.

A preliminary version of this paper was published in Meng and Tu (2017). We
significantly extended that version by showing a series of new findings. These include:
(1) new constant approximation theorems, such as the NP-hard MIES support has
constant approximation algorithms; overlap graphs fall into a category of so called
(k + 1)-claw-free graph, together with the fact that MIS is equivalent to MIES, the
MIS support can be approximated within a constant factor; (2) furthermore we present
the improved ratio betweenmeasures, for example the ratio betweenMIES andMVC is
within constant k; we also compare polynomial time measures derived from standard
linear programming (LP) and semidefinite programming (SDP) in the hypergraph
framework and show that the integral gap of LP is k−1+ 1

k for k-uniform hypergraphs
and the SDP relaxation is strictly stronger than the LP relaxation, its integral gap is at
most k+1

2 ; (3) we analyze the concepts of overlap and present potential applications
of them in designing and improving support measures in the hypergraph framework;
we propose a new variant of MI which is also linear-time computable; in addition, we
give a theorem proving that only same-label node subsets are necessary for effectively
counting minimum number of node subset images, which is the key for designing
minimum-image-based support measures.

The rest of this paper is organized as follows: in Sect. 2, we formally define the
problem and sketch the necessary background for the problem; in Sect. 3, we present
a framework, introduce our new support measures and study their feature, and show
that this framework unifies all support measures mentioned in this paper; in Sect. 4,
we discuss its potential in defining and studying a wide range of support measures,
and new hardness and approximation theorems among all support measures studied
in this paper; in Sect. 5 we present and review the experimental evaluations of the
major support measures discussed in this paper; in Sect. 6, we present a brief review
of related work; and we conclude our paper in Sect. 7.

2 Preliminaries

In this section, we introduce basic notations to describe the problem and the necessary
background.

2.1 Labeled graphs

In this paper, we only consider the case of a labeled graph, which is simply referred
to as graph hereafter. In all figures of this paper, the shade of a vertex represents its
label.

Definition 1 A (undirected) labeled graph

G = (VG, EG , λG)
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consists of a set of vertices VG , a set of edges EG ⊆ VG × VG := {(u, v) | u, v ∈
VG , u �= v} and a labeling function λG : VG → Σ that maps each vertex of the graph
to an element of the alphabet Σ . We use G to denote the class of all graphs.

Definition 2 A graph S = (VS, ES, λS) is a subgraph of G = (VG , EG , λG) if VS is
a subset of VG and ES is a subset of EG and for all v ∈ VS, λS(v) = λG(v).

Definition 3 A pattern P = (VP , EP , λP ) is a labeled graphwe use as a query against
another graph.

Definition 4 Let P be a graph pattern, and p a subgraph of P , denoted by p ⊆ P . We
call p a subpattern of P , and likewise, we call P a superpattern of p.

2.2 Graph isomorphism

Given the problem of finding pattern P in a large dataset graph G, we need tech-
niques for determining whether P is structural identical to G or a subgraph of G, and
consequently decide if pattern P appears in dataset graph G.

Definition 5 A graph G1 is isomorphic to G2 if and only if there exists is a bijection
(one-to-one mapping) between the vertex sets of G1 and G2

f : VG1 → VG2

that preserves vertex labels and

(v1, v2) ∈ EG1 if and only if ( f (v1), f (v2)) ∈ EG2 .

Generally speaking, an isomorphism is an edge-preserving bijection between the ver-
tex sets of two graphs, say G1 and G2. In this case, one can take G1 as a copy of G2,
or vise versa.

Definition 6 An automorphism of graph G is an isomorphism from G onto itself.

Definition 7 AgraphG1 is subgraph isomorphic toG2 if and only ifG1 is isomorphic
to a subgraph of G2.

In order for us to know how many times a pattern appears in a data graph, we need
to define the concept of an occurrence and an instance of the pattern in the data graph.

In this article when there is no confusion we write graph G = (VG, EG , λG) as
G = (VG , EG) for simplicity.

Definition 8 Given a pattern P = (VP , EP ) and a graph G = (VG , EG), an occur-
rence is an isomorphism f from pattern P to a subgraph of G. That is to say f is also
a subgraph isomorphism from P to G.

Definition 9 Given a pattern P = (VP , EP ) and a graph G = (VG , EG), a subgraph
S of G is an instance of pattern P in G when there exists an isomorphism between P
and S.
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Fig. 2 An example showing a triangle-shaped pattern with 6 occurrences and 1 instance in a data graph.
In this case, MNI overestimates the count of pattern—we have an MIS measure of 1 but the MNI measure
equals 3

Note that occurrence and instance are two different concepts. An occurrence is an
isomorphism between pattern P and a subgraph of dataset graph G, while an instance
is a subgraph of G that is isomorphic to pattern P . There can be multiple occurrences
mapping pattern P to one instance. For example, in Fig. 2 the triangle-shaped pattern
has 6 occurrences f1, f2, f3, f4, f5, f6 in the data graph, while it has only one instance
which is the subgraph induced by vertices 1, 2 and 3. Occurrence and instance are key
components in the support measure framework we propose.

2.3 Overlap concepts and support measure

The purpose of defining support measure is to count the appearances of a pattern P in
a data graph G. The definition of support measure is given below:

Definition 10 A support measure of pattern P in data graph G is a function σ :
G × G → R

+, which maps (P,G) to a non-negative number σ(P,G).

One natural way of defining a pattern support measure is to use its occurrence count,
however this measure does not satisfy the anti-monotonic property, which states that
the support of a pattern must not exceed that of its subpatterns (Vanetik et al. 2002;
Kuramochi and Karypis 2005). A more intuitive support measure is the count of
instances of the pattern in a dataset graph.Thismeasure, however, is not anti-monotonic
either (Vanetik et al. 2002; Kuramochi and Karypis 2005).
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Anti-monotonicity is a basic requirement for supportmeasure becausemost existing
frequent pattern mining algorithms depend on it to safely prune a branch of infrequent
patterns in the search space for efficiency. Formally, we have

Definition 11 A support measure σ of pattern P in G is anti-monotonic if for any
pattern p and its superpattern P , we have σ(p,G) ≥ σ(P,G).

To address the above challenge, Vanetik et al. (2002) proposed the first non-trivial
anti-monotonic support measure named maximum independent set based (MIS) sup-
port. TheMIS support is developed on top of the so-called overlap graph derived from
the data graph. We describe the main ideas of this method as follows. First we should
explain the concepts of overlap.

Definition 12 (Vertex overlap) A vertex overlap of occurrences f1 and f2 of pattern
P = (VP , EP ) in data graph G = (V , E) exists if vertex sets f1(VP ) and f2(VP )

intersect, that is, f1(VP ) ∩ f2(VP ) �= ∅ where fi (VP ) = { fi (v) : v ∈ VP }, i = 1, 2. A
vertex overlap of instances S1 = (VS1 , ES1) and S2 = (VS2 , ES2) of pattern P exists
if vertex sets of S1 and S2 intersect, that is, VS1 ∩ VS2 �= ∅.
Definition 13 Given a pattern P = (VP , EP ) and a dataset graph G = (V , E), an
occurrence (instance) overlap graph is a graphO such that each vertex ofO represents
an occurrence (instance) of P in G, and two vertices u and v are adjacent if the two
occurrences (instances) overlap (in sense of one type of overlap defined above).

In this article, we mainly study how occurrences overlap and we only consider
overlap in vertex.

Definition 14 An independent (vertex) set of graph G = (V , E) is a subset of V ,
such that no two of which are adjacent.

Definition 15 Given a pattern P = (VP , EP ) and a data graph G = (V , E), the
maximum independent set based support is defined as the cardinality of maximum
independent vertex set of occurrence or instance overlap graph O:

σMI S(P,G) = max
I

|I |,

where I is an independent set of O . We use symbol | · | to denote the number of ele-
ments in the set.

For example, in Fig. 3 the triangle pattern has 4 occurrences f1, f2, f3, f4 in data
graph. Because they pair-wise overlap, every pair of vertices is connected by an edge
in overlap graph. The maximum size of independent vertex set is 1, hence MIS=1.

The main drawback of the MIS support is computing efficiency—it is shown by
Karp (1972) that maximum independent set problem is NP-hard in number of graph
vertices. Because MIS proposed in Vanetik et al. (2002) is based on overlap graph,
vertices represent instances of pattern in data graph. Thus computingMIS as a support
measure is also NP-hard.2

2 In this paper, following conventions of this field, computing time of support measures does not include
that for constructing the framework (e.g., overlap graph in the MIS case).
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Bringmann and Nijssen (2008) proposed a support measure calledminimum image
based support (MNI). It is based on a technique different from the overlap graph. The
main concept here is image, which is an existence of a vertex in the pattern (called
node hereafter) in the data graph. For example, in Fig. 3, node v1 in the pattern has
2 distinct images because there are occurrences map v1 to vertices 1, 4 in data graph
(e.g., f1(v1) = 1, f2(v1) = 1, f3(v1) = 4 and f4(v1) = 4). The formal definition of
MNI is given below.

Definition 16 Given a pattern P = (VP , EP ), a data graph G = (V , E), if P has m
occurrences { f1, f2, . . . , fm} in G, the minimum image based (MNI) support of
P in G is defined as

σMN I (P,G) = min
v∈VP

|{ fi (v) : i = 1, 2, . . . ,m}|.

In other words, for each node v in pattern P , MNI support identifies the count c of
its unique images, here c = |{ fi (v) : i = 1, 2, . . . , l}|. Then MNI support measure of
P in G is the minimum count c among all nodes in pattern P . For example, in Fig. 3,
the MNI support measure of the triangle pattern is 2.

The anti-monotonicity ofMNI is guaranteed by taking the node in P that is mapped
to the least number of unique nodes in G.

A clear advantage of MNI support over the NP-hard MIS support is computation
time. The reason is that it only requires a set of images for every node in a pattern,
and finding the minimum number of distinct images for each set can be done in O(n)

where n is the number of occurrences of a pattern. However, MNI support has an
obvious disadvantage, that is over-estimation. Let us take a look at the example in
Fig. 2 the MIS support of the triangle-shaped pattern is 1 while MNI support is 3,
because the minimum number of images of each node is 3. It does not agree with our
intuition that the 6 occurrences f1, f2, f3, f4, f5, f6 of the pattern overlap and there
is only one instance, which is the subgraph induced by vertices 1, 2 and 3. In other
words, MIS counts only independent pattern occurrences, while MNI allows certain
degree of overlap exists in occurrences it counts.

The MIS and MNI supports represent the two main flavors of work in the design
of support measure for frequent subgraph mining. Both are anti-monotonic yet they
stand on far ends of computing efficiency and overestimation of pattern frequency.
While the MIS returns the smallest count, there is no efficient algorithm to compute
it (Calders et al. 2008). The MNI requires only linear time to compute but can return
an arbitrarily large count for a pattern (Bringmann and Nijssen 2008). Both MIS and
MNI have variants other than the basic forms mentioned in this section. We will give
more details of the variants in Sect. 6. Here we only emphasize that those variants do
not significantly change the features of MIS and MNI.

Intuitively, the MNI support returns counts that are closer to the number of occur-
rences of a pattern. However, it is more natural to define support measure of a pattern
according to the number of instances (note that MIS calculates the number of indepen-
dent instances). Recall the case in Fig. 2: the number of instance is 1, however its MNI
support measure is 3, and this does not follow common sense. It is known, however,
that the count of instances as a support measure is not anti-monotonic, in this paper
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Fig. 3 An example showing the key components (i.e., images and overlap graph) in the calculation of the
MNI and MIS support measures

we will present anti-monotonic support measures that achieve counts that are closer
to the number of independent pattern instances, as is the MIS support measure.

3 New framework

In this section, we shall introduce a new framework for modeling pattern occurrences.
Intuitively, we want to define frequency of pattern occurrences or instances while they
overlap in data graph in various ways. Hence we propose a framework that models
how occurrences or instances overlap on vertices. In classic graph theory, a graph
can be represented by a collection of edges, where each edge joining two vertices. A
hypergraph, as a generalization of a graph, in which an edge can join any number of
vertices, and it can be represented as a collection of vertex sets. Since occurrences of
a pattern usually contains two or more vertices, e.g. in Fig. 3, each occurrence has 3
vertices, and if we study vertex overlap between occurrences, we should be able to
model a collection of occurrences as a hypergraph.

In what follows, we introduce a new concept named occurrence/instance hyper-
graph from which not only the existing support measures can be interpreted, but also
new support measures can be constructed. Such a concept simplifies the problem of
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finding support measures with desired features. Note that this technique is different
from the overlap graph used inMIS and the images of occurrences used inMNI. Instead
of instances (subgraphs) and occurrences (isomorphisms), we represent a node (i.e.,
vertex in pattern) image as a vertex and an occurrence/instance as an edge.

Definition 17 A hypergraph H = (V , E) consists of a set V = {v1, v2, . . . , vn} of
n vertices and a set E = {e1, e2, . . . , em} ofm edges, where each edge is a non-empty
subset of V . A simple hypergraph H is a hypergraph in which no edge is subset of
another edge, that is, if ei ⊆ e j then i = j . A k-uniform hypergraph is a hypergraph
such that all its edges have size k.

Definition 18 If pattern P = (VP , EP ) has m occurrences { fi : i = 1, . . . ,m},
the occurrence hypergraph of P in G is defined as HO = (V , E) where V =
f1(VP ) ∪ f2(VP ) ∪ · · · ∪ fm(VP ), and E = {ei : i = 1, . . . ,m}, each ei = fi (VP ).
In other words, hypergraph vertex set V is the collection of all pattern node images,
and each edge ei is a collection of pattern node images mapped by occurrence fi . We
also give each ei a label fi to distinguish them from each other.

Definition 19 If pattern P = (VP , EP ) has m instances {Si = (VSi , ESi ) : i =
1, . . . ,m} in data graph G, the instance hypergraph of P in G is defined as H I =
(V , E)where V = VS1 ∪VS2 ∪· · ·∪VSm and E = {ei : i = 1, . . . ,m}, each ei = VSi .
We also give each ei a label Si to distinguish them from each other.

Note that in Definitions 18 and 19, edges as collections of pattern node images are
multisets.

Figure 4 gives a visualization of occurrences of a pattern in a data graph and how
occurrences overlap with each other, the upper right part shows pattern occurrences
and instances, while the lower right part shows another way of visualize occur-
rence/instance hypergraph.

Let us use Fig. 4 to show how the hypergraphs are constructed: the occurrence
hypergraph HO = (V , E) has vertex set V = {1, 2, 3, 4, 5, 6, 8, 9, 10} and edge set
E = {e1, e2, e3, e4} = {{1, 2, 3}, {4, 5, 6}, {4, 6, 8}, {8, 9, 10}}. Note that in occur-
rence (instance) hypergraph, each edge represents one occurrence (instance) and it
is not just a set of vertices. In Fig. 4 the instance hypergraph has 4 edges represent-
ing 4 instances, and it is similar to occurrence hypergraph. However, in many other
situations occurrence and instance hypergraphs look very different. For example in
Fig. 2, occurrence hypergraph of the triangle-shaped pattern has 6 edges because there
are 6 occurrences. Although all the edges have the same vertex set {1, 2, 3}, they are
considered as 6 different edges because they represent different occurrences. On the
other hand, instance hypergraph of pattern in Fig. 2 has only one edge since there is
one instance. This difference between the occurrence hypergraph and instance hyper-
graph is caused by automorphisms. When a pattern has non-identity automorphisms,
multiple occurrences project the pattern to the same instance. If a pattern admits no
non-identity automorphism, its occurrence and instance hypergraphs will be quite
similar.

For the following discussions, we want to emphasize that, since all edges in occur-
rence (instance) hypergraph are related to the same pattern, they contain the same
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Fig. 4 The occurrence and Instance hypergraph of a triangular pattern within a 12-node data graph

number of vertices which means that occurrence (instance) hypergraphs are uniform
hypergraphs.

As shown in Fig. 4, pattern occurrences that are represented by hypergraph edges
overlap in various degrees and positions. While in occurrence (instance) overlap
graphs, each occurrence (instance) is converted to a vertex, if two occurrences
(instances) overlap, an edge is generated between them. As a result, how occurrences
(instances) overlap is not fully taken into consideration. For example, in Fig. 4, e3
and e2 overlap at two vertices but e3 and e4 overlap at one vertex. We argue that a
hypergraph framework keepsmore such information and offers more insights and flex-
ibility for further investigation, as compared to overlap graph based support measure
such as MIS presented in Vanetik et al. (2002). In short, the hypergraph is a suitable
topological representation of pattern occurrences (instances) for investigating support
measures. More details will follow, and let us first discuss how MNI and MIS are
embedded in this new framework.

3.1 MIS in hypergraph framework

Wenow show that,MIS, which is defined based on overlap graphs, can also bemapped
to the hypergraph framework. MIS is defined the size of maximum independent set
of overlap graph. In other words, MIS counts the maximum number of independent
occurrences. In occurrence hypergraph, occurrences are edges, hence intuitively MIS
should be equivalent to the size of maximum independent edge set in occurrence
hypergraph.

123



992 J. Meng et al.

For that, we shall introduce a new measure in hypergraph setting and show it is
equivalent to MIS.

Definition 20 Given a pattern P in data graph G and its occurrence (instance) hyper-
graph H = (V , E), the maximum independent edge set (MIES) support measure
is defined as

σMI ES(H) = max
E ′ |E ′|,

where E ′ is an independent edge set of H .

With above formulations, we can show the MIS support measure is equivalent in
size to MIES.

Theorem 1 Given pattern P in data graph G, and its occurrence (instance) hyper-
graph H = (V , E), we have

σMI ES(P,G) = σMI S(P,G).

Proof Every edge in occurrence (instance) hypergraph corresponds to a vertex in over-
lap graph, hence an independent hypergraph edges set corresponds to an independent
vertex set in overlap graph. This mapping implies the size of independent edge set in
hypergraph is the same as that of independent vertex set in overlap graph. �

We take Fig. 4 as an example, in which the MIES support in overlap graph is 3.
Taking a close look, for example, {e1, e2, e4} forms a maximum independent set. The
MIS in instance hypergraph is also 3.

Theorem 2 The MIES measure is anti-monotonic.

In graph theory, there is a concept named conflict graph which is quite similar to
overlap graph. In a k-uniform hypergraph H = (V , E), the conflict graph is the graph
where every edge in E is represented by a vertex. Two vertices are adjacent if and
only if the edges in E these vertices correspond to intersect each other.

The overlap graph approach is also similar in nature to how dual hypergraph is
built. The definition of dual hypergraph is given as follows:

Definition 21 The dual hypergraph H∗ = (E, X) of H = (V , E) is a hypergraph
whose vertices and edges are interchanged, so that the vertices are given by E = {e1,
e2, . . ., em} and the edges are given by X = {X1, X2, . . . , Xn} where X j = {ei :
v j ∈ ei }, j = 1, 2, . . . , n, that is, X j is the collection of all edges in H which contain
vertex v j .

In other words, the dual H∗ swaps the vertices and edges of H . For example, in
Fig. 5, dual hypergraph has vertices e1, e2, e3 and edges 1, 2, 3, 4.Hence overlap graph
and dual hypergraph are similar in the sense that all edges in H are vertices in both
dual H∗ and overlap graph. If two edges ei , e j in H overlap at vertex v then ei , e j are
contained in edge Xv in dual H∗, while (ei , e j ) forms an edge in overlap graph.
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Data Graph:

1

2
3

4

Pattern:

v1

v2

Occurrence Hypergraph:

1

2
3

4

e1e2

e3

Dual Hypergraph:

e1e2

e3

13

4 2

Overlap Graph:

e1e2

e3

Overlap Hypergraph:

e1e2

e3

Fig. 5 The instance hypergraph and its dual for a small pattern in a data graph

Actually, each edge in dual H∗ is equivalent to a clique in the overlap graph. If H∗
is a simple hypergraph, then it is very similar to the overlap hypergraph introduced
by Wang and Ramon (2012). The clique in overlap graph is related to intersecting
family in occurrence hypergraph (as hypergraph in general), the details are as follows.
In a hypergraph H = (V , E), a set F of hyperedges is called an intersecting family
if every two hyperedges in F have a non-empty intersection. The concepts of clique
and intersecting family are important, because they connect the LP and SDP relax-
ations with maximum independent edge set problem, more details will be presented
in Sect. 4.3.

3.2 MNI in hypergraph framework

The technique MNI uses is minimum image, and it uses the minimum number of
images of each pattern node as support count. In the hypergraph framework, each
occurrence is viewed an edge, and the edge is also an image of the pattern in data
graph. A natural question to ask is that does it make sense to count single node
images instead of pattern images? MIS gives an answer of counting non-overlapping
pattern images, while the count of MNI gives is an obvious upper bound of MIS
because the number of single nodes images is alway greater than the number of non-
overlapping pattern node images (Theorem 2 in Bringmann and Nijssen 2008). For
example, in Fig. 4, nodes v1, v2, and v3 each has 3 distinct images, namely {1, 6, 10},
{2, 4, 9}, and {3, 5, 8}, hence MNI count is 3, which agrees with MIS count. In other
words, the difference of handling occurrences between MNI and MIS is single node
images and whole pattern node set images. MNI is efficient but with some drawbacks.
One comes from a major character of graph pattern, that is multiple isomorphisms
can map a pattern into the same subgraph of a data graph, this structural character
makes graph pattern counting difficult. We have shown in Fig. 2, that MNI cannot
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Data Graph: 1 2 3 4

O Hypergraph: 1

e1
2 3 4

e2

Pattern: v1 v2 v3

Occurrences: 1 2 3
4 3 2

2 2 2# of images:
MNI = min(2,2,2) = 2

v1 v2 v3

1 2 3
4 3 2

2 1
MI = min(2,2,2,1) = 1

Fig. 6 An example showing the difference between the calculation of the MNI and MI support measures

handle automorphism very well by simply counting single node images. We shall
present a new support measure that inherits the efficiency of MNI while improves its
intuitiveness by considering automorphism.

3.3 Minimum instance support measure

Asdescribed above, theMNI supportmeasure is insensitive to the structure of subgraph
patterns. To address this problem of theMNI support, we take the structure of the given
pattern into consideration and define a new support measure. Let us explain the main
idea by using the example shown in Fig. 6.

In the pattern we have three nodes v1, v2, and v3, each has two images {1, 4}, {2, 3},
and {3, 2}, hence the MNI support of measure of this pattern is 2. However, it misses
the fact that the two occurrences overlap on vertices 2 and 3. Apparently the two
nodes v2 and v3 are symmetric in a subpattern, meaning there is automorphism on the
subpattern that maps one to the other. Hence v2, v3 can be considered as a set {v2, v3},
which has one image {2, 3} as set. This observation leads to the idea of defining a new
support measure which takes advantage of patterns’ topological structure and reduces
overestimation of MNI.

Before defining the new support measure, let us first introduce supportive concepts.

Definition 22 Given a pattern P = (VP , EP ), a data graph G = (V , E), if P has m
occurrences { f1, f2, . . . , fm} in G, a coarse-grained node subset W is defined as a
subset of VP that satisfies certain property. The coarse-grained node subset image
count is defined as

c(W ) = |{ fi (W ) : i = 1, 2, . . . ,m}|.

Note that in Definition 22 the certain property depends on what support measure is
under consideration. For example the property can be that all nodes in the subset have
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the same label (as for a measure named HO-MI in Sect. 4.4). In Fig. 6, if a coarse-
grained node subset W is {v2, v3}, then its coarse-grained node subset image count
c(W ) = |{{2, 3}, {3, 2}}| = 1. For node subset M = {v2}, c(M) = |{{2}, {3}}| = 2.

Inspired by our observation, the pattern nodes that are symmetric to each other
should be included in the node subsets, hence we shall introduce the definition of
orbit from classic graph theory as follows.

Suppose that two vertices u and v in graph G are to be considered related if there is
at least one automorphism f of G such that f (u) = v. This is clearly an equivalence
relation on the vertices of graph G.

Definition 23 The equivalence classes of the vertices of a graph G under the action of
the automorphisms are called (vertex) orbits.

Note that every node v of a pattern P lies in some orbit (whose size may be 1).
Now we are ready to define a new support measure of pattern P using the definition
of coarse-grained node subset image count.

Definition 24 Given a pattern P = (VP , EP ), a data graph G = (V , E), we let T
denote the multiset of an orbit in a subgraph of pattern P , and T = {T } denote the
collection of all such orbits. The minimum instance based support (MI) of P in G
is defined as

σMI (P,G) = min
T∈T

c(T ).

Note that T contains orbits of any subgraph of pattern P . As for the example in
Fig. 6, the pattern has coarse-grained node subsets {v1}, {v2}, {v3} and {v1, v2}, hence
σMI (P,G) = 1. Now let us study the main properties of the MI support.

Theorem 3 The MI support measure is anti-monotonic.

Proof Given pattern p = (Vp, Ep) and its superpattern P = (VP , EP ) in data graph
G, we assume that p hasm occurrences { f1, f2, . . . , fm} inG and P has l occurrences
{ f ′

1, f ′
2, . . . , f ′

l } in G.
First, we have σMI (p,G) = minT∈T c(T ) and σMI (P,G) = minT∈T ′ c′(T ). It is

obvious that T ⊆ T ′ by definition. In the next step, we shall prove that for each T ∈ T
its image count c(T ) under the mappings { f1, f2, . . . , fm} is greater than or equal to
its image count c′(T ) under the mappings { f ′

1, f ′
2, . . . , f ′

l }. This is true because any
f ′
i is an extension of some fi which implies f ′

i (T ) = fi (T ), ∀ T ∈ T . Therefore
minT∈T c(T ) ≥ minT∈T c′(T ) ≥ minT∈T ′ c′(T ).

Hence we have σMI (p,G) ≥ σMI (P,G). �
Figure 7 shows the anti-monotonicity of MI support measure via an illustrative

example. The triangle-shaped pattern induced by nodes v1, v2, v3 has six occurrences
f1, f2, f3, f4, f5, f6, its MI support is 1. When this pattern extended by connecting
node v4 with node v3, the new pattern has six occurrences but the MI support of this
superpattern is 1 which is not greater than the triangle-shaped pattern.

Theorem 4 The MI support measure is linear-time computable.
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Data Graph:

1

24 3

5

6

Pattern:

v1

v2 v3 v4

Occurrences v1 v2 v3 v4

f1:
g1:

f2:
f3:
g2:

f4:
f5:
f6:

1 2 3 5
1 2 3 6
1 3 2 4
2 1 3 5
2 1 3 6
2 3 1
3 1 2 4
3 2 1

Fig. 7 An example showing occurrences of a pattern (triangle with v1, v2, v3 nodes) while being extended
to a superpattern (by adding one extra node v4) within the same 6-node data graph

Proof Given σMI (p,G) = minT∈T c(T ), and there are a fixed number of T for
pattern P , it is obvious that calculating c(T ) costs O(n) time where n is the number
of occurrences. Hence, σMI is linear-time computable. �
Theorem 5 Given a pattern P and data graph G, we have

σMI (P,G) ≤ σMN I (P,G).

Proof Let W = {{v} : v ∈ VP } we can rewrite MNI support measure as
σMN I (P,G) = minW∈W c(W ).

Since W ⊆ T , we have σMI (P,G) = minT∈T c(T ) ≤ minW∈W c(W ) =
σMN I (P,G). �

In practice, there will bemany cases inwhichMImeasure is strictly smaller than the
MNI measure. As in Fig. 6, when considering additional coarse-grained node subsets,
minimum count among all of themwill decrease. In such a way, we can obtain support
count MI that is closer to the number of instances compared with MNI.

In summary, we show that MI support is anti-monotonic, can be computed in linear
time, and returns frequency that is bounded by MNI. In the hypergraph setting, MNI
and its variantwith parameter k reduce the pattern to subsets containing one or k pattern
nodes. By revisiting the concept of coarse-grained node subset defined in Sect. 3.3,
we see how σMN I (P,G) can be interpreted in terms of such concepts.

In a pattern P = (VP , EP ), if we let W = {{v} : v ∈ VP }, we can rewrite MNI
support measure as

σMN I (P,G) = min
W∈W

c(W ).
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Data Graph:

1

2 3

4

Pattern:

v1

v2 v3

MNI support

v1 v2 v3

f1: 1 2 3
f2: 1 3 2
f3: 4 2 3
f4: 4 3 2

# of
images: 2 2 2

MNI = min(2,2,2) = 2

MI support

v1 v2 v3

f1: 1 2 3
f2: 1 3 2
f3: 4 2 3
f4: 4 3 2

# of
images: 2 2 2

1

MI = min(2,2,2,1) = 1

O Hypergraph:

1

2 3

4

e1, e2

e3, e4

Fig. 8 An example showing the calculation of the MNI and MI support measures in the hypergraph frame-
work

Similarly, we letWk = {V ′ : connected V ′ ⊆ VP , |V ′| = k}, then σMN I (P,G, k) can
be interpreted as

σMN I (P,G, k) = min
V ′∈Wk

c(V ′).

The above definitions show connections among σMN I (P,G), σMN I (P,G, k), and
the new support measure σMI (P,G). Figure 8 displays how MNI and MI fit in the
hypergraph framework. Note thatMI is not simply a transformation from graph pattern
to a hypergraph version. For example, in Fig. 8, vertices v3 and v2 are not connected
by an edge, but they are in an orbit. In conclusion, hypergraph edges (vertex sets)
are used to capture desired and essential features of pattern graph for the purpose of
designing support measures. From this point of view, hypergraph is indeed a suitable
and flexible framework for support measures.

3.4 Minimum vertex cover support measure

The purpose of developing MI is to achieve a reasonable count by avoiding overes-
timation by MNI. However, MI cannot handle the type of overlap shown in Fig. 9.
Although the number of independent instances is only 2 (e.g., {1, 5} and {4, 8} are
independent), we still get MI = MNI = 4. Moreover, there are merely three possible
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Data Graph:

1

2

3

4

5

6

7

8

Pattern:

v1 v2

Occurrences v1 v2

f1:
f2:
f3:
f4:
f5:
f6:
f7:

1 5
1 6
1 7
1 8
2 8
3 8
4 8

# of images: 4 4
MIS = 2, MVC = 2, MI = 4, MNI = 4

Fig. 9 An example with a 2-node pattern within a 8-node data graph shows that the MNI measure can
over-estimate the count of patterns by ignoring partial overlap

coarse-grained node subsets {v1}, {v2}, {v1, v2}, their images counts are 4, 4, and 7.
Hence any variant of MI will not help either.

It seems that for some data graphs (e.g., Fig. 9) the partial overlaps among pattern
nodes matter, hence dividing node set in subsets and using their individual minimum
image count is not plausible in this case. Thus we treat all pattern nodes as one set, that
is,we do not break edges in occurrence (instance) hypergraph.Hence every node image
in each occurrence (instance) can be chosen to represent this occurrence (instance).We
seek a small number of node images that together represent all occurrences (instances).
Intuitively, we want to find an ultimate version of minimum image count, which uses
representative node image instead ofminimumcount of single node images and obtains
counts closer to MIS.

Nowwe introduce a support measure that is even smaller thanMI but requires more
time to compute. The central idea is related to the well-known vertex cover problem.

Definition 25 A vertex cover of hypergraph H = (V , E) is a subset of V that inter-
sects with every edge of H . A minimum vertex cover is a vertex cover with the
smallest cardinality.

Under the occurrence/instance hypergraph framework, we can transform the
minimum vertex cover to a support measure that gives reasonable count of occur-
rences/instances.

Definition 26 Given pattern P in data graph G, and its occurrence (instance) hyper-
graph H = (V , E). The minimum vertex cover based (MVC) support of P in G
is defined as

σMVC (P,G) = min
C

|C |,

where C is a vertex cover of H .
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In other words, MVC is defined as the cardinality of a smallest vertex cover set in
the occurrence (instance) hypergraph of P in G. For example, in Fig. 9, edges in the
occurrence hypergraph are {{1, 5}, {1, 6}, {1, 7}, {1, 8}, {2, 8}, {3, 8}, {4, 8}}, and the
vertex set {1, 8} is a minimum vertex cover, hence σMVC = 2.

The properties of MVC are discussed below.

Theorem 6 The MVC support is anti-monotonic.

Proof We shall show that for a pattern p and its superpattern P in graph G, we have
σMVC (p,G) ≥ σMVC (P,G).

Let { f1, f2, . . . , fm} and { f ′
1, f ′

2, . . . , f ′
m′ } denote the set of all occurrences of

patterns p and P respectively. Let Hp and HP be occurrence hypergraphs of p and P
respectively. Assume that C is a minimum vertex cover of Hp, it intersects with every
edge fi (Vp). Because any occurrence f ′ of pattern P in G must be an extension of
an occurrence fi of pattern p in G, we obtain that fi (Vp) ⊆ f ′(VP ). If C intersects
with fi (Vp), it must intersect with f ′(VP ). Hence a minimum vertex cover C of Hp

contains a vertex cover of HP . Therefore the cardinality of C is greater or equal to
that of minimum vertex cover of HP , that is, σMVC (p,G) ≥ σMVC (P,G). �

Let us refer to Fig. 7 for an illustrative example of the anti-monotonicity of σMVC :
when the pattern {v1, v2, v3} is extended to include {v4}, the MVC support is still 1.
For example, vertex set {1} is a minimum vertex cover, and it still intersects with each
extended hypergraph edges hence it is a vertex cover of superpattern’s occurrence
hypergraph.

Theorem 7 Given a pattern P and data graph G, we have

σMVC (P,G) ≤ σMI (P,G).

Proof Assume that pattern P = (VP , EP ) has m occurrences { f1, f2, . . . , fm}.
Since σMI (P,G) = minT∈T c(T ), there must be one coarse-grained node subset that
achieves this minimum count σMI . We denote this node subset as T , and its images
as { fi (T ), i = 1, 2, . . . ,m}. Because fi (T ) ⊆ fi (VP ), a minimum vertex cover C
of { fi (T ) : i = 1, 2, . . . ,m} is also a vertex cover of { fi (VP ) : i = 1, 2, . . . ,m}.
Therefore we get σMVC (P,G) ≤ |C |. In the next step, we will show that |C | ≤
|{ fi (T ) : i = 1, 2, . . . ,m}|.

If T contains only one vertex, then |C | = |{ fi (T ) : i = 1, 2, . . . ,m}|. If T contains
two or more vertices, we can assume that C = {u1, u2, . . . ul}, where ui ∈ fi (T ),
i = 1, 2, . . . , l. Obviously we have |C | = |{ fi (T ) : i = 1, 2, . . . , l}| ≤ |{ fi (T ) : i =
1, 2, . . . ,m}| = c(T ) = σMI (P,G). Hence σMVC (P,G) ≤ σMI (P,G). �

Now we see that MVC is anti-monotonic, and is bounded by MI. In Sects. 4.2
and 4.3 , we shall further show that the MVCmeasure is actually close to the MIS. As
to the computing efficiency, MVC is unfortunately NP-hard—this is easy to prove as
it essentially involves solving the minimum vertex cover problem in the occurrence
hypergraph. Luckily, in a k-uniformhypergraph,MVC is k-approximable, by choosing
a maximal set of independent edges, and picking all vertices in them. Details can be
found in Sect. 4.3.
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In summary, MVC returns smaller counts but requires more time to compute as
compared to MI. Its advantage is that it allows less overlaps between occurrences /
instances and obtains the minimum count in the minimum image approach.

3.4.1 Relationship between MVC andMCP

We have shown that MIES in hypergraph framework is equivalent to overlap-graph-
based MIS in terms of support value. MVC is actually similar to overlap-graph-based
minimum clique partition support (MCP) (Calders et al. 2008). Given a pattern P in
data graphG and its occurrence hypergraph H , the size of minimum clique partition of
the overlap graph is atmost that ofminimumvertex cover of the occurrence hypergraph
H . The reason is that for each vertex in a vertex cover of H , all edges containing this
vertex in the H constitute a clique in the overlap graph, hence a vertex cover of
occurrence hypergraph can be converted to a clique cover of overlap graph. On the
other hand, in the overlap graph, there are cliques that correspond to multiple vertices
in vertex cover of H , as clique in overlap graph corresponds to a intersecting family
in occurrence hypergraph. Hence the count of MVC is at least that of MCP in overlap
graph.

4 Further study of support measures in hypergraph framework

We shall utilize results in k-uniform hypergraphs to study the relationships between
MIS, MIES, MVC and support measures derived from them.

Let us start with MVC by assuming that hypergraph H = (V , E) consists of a set
V = {v1, v2, . . . , vn} of n vertices and a set E = {e1, e2, . . . , em} ofm edges. We have
a variable x(v) for each vertex v ∈ V indicating whether v is chosen in the vertex
cover or not. The constraints state that in each hypergraph edge e at least one vertex
should be chosen and the object is to minimize that number of such chosen vertices.
Now we can write:

min
∑

v∈V
x(v)

subject to
∑

v∈ei
x(v) ≥ 1 ∀i

x(v) ∈ {0, 1} ∀v. (1)

By definition the dual hypergraph H∗ of H is a hypergraph whose vertices and edges
are interchanged, so that the vertices are given by {ei : i = 1, 2, . . . ,m} and the edges
are X = {X1, X2, . . ., Xn} where X j is the collection of all edges in H which contain
vertex v j . Let variable y(e) indicate whether e is in the independent set or not. The
constraints state that in each edge X only one vertex be chosen and the object is to
maximize that number of independent vertices. Therefore the dual of minimum vertex
cover problem in H is maximum independent vertex set problem in H∗, which can
be formulated as:
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max
∑

e∈E
y(e)

subject to
∑

e∈Xi

y(e) ≤ 1 ∀i

y(e) ∈ {0, 1} ∀e. (2)

4.1 Polynomial time relaxations

The relaxation technique transforms an NP-hard optimization problem into a related
problem that is solvable in polynomial time.

In addition, the solution obtained from relaxation gives information about the solu-
tion to the original problem. For example, a solution to a linear programming gives an
upper (lower) bound on the optimal solution to the original maximization (minimiza-
tion) problem.

Now we have presented the integer programming transformation of the problems.
Basedon that,we are ready to relax the integrability conditions of these twoproblems to
obtain linear programming relaxations and formally define LP relaxations, the relaxed
versions of theMVC andMIESmeasures. It is easy to verify that the optimal solutions
exist, and we shall also show that they are both anti-monotonic.

Definition 27 Given a pattern P in a data graph G, and its occurrence (instance)
hypergraph H = (V , E), where V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}, the
polynomial-timeMVC (RMVC) support measure of pattern P in graph G is defined
as

σRMVC (P,G) = min
∑

v∈V
x(v)

subject to
∑

v∈ei
x(v) ≥ 1 ∀i

0 ≤ x(v) ≤ 1 ∀v. (3)

Likewise, we relax the integrability conditions of maximum independent edge set
problem to obtain a linear programming formulation and another polynomial-time
support.

Definition 28 Given a pattern P in a data graph G, and its occurrence (instance)
hypergraph H = (V , E), where V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em},
dual hypergraph H∗ = (E, X), X = {X1, X2, . . . , Xn}, the polynomial-time MIES
(RMIES) support measure of pattern P in graph G is defined as

σRMI ES(P,G) = max
∑

e∈E
y(e)

subject to
∑

e∈Xi

y(e) ≤ 1 ∀i
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0 ≤ y(e) ≤ 1 ∀e. (4)

Theorem 8 The polynomial-time LP relaxation of MVC support measure is anti-
monotonic.

Proof We shall show that σRMVC (p,G) ≥ σRMVC (P,G) for any pattern p and its
superpattern P in data graph G. Let us assume that the occurrence hypergraphs of p
and P in G are Hp = (V , E) and HP = (V ′, E ′) respectively.

Our approach is that: we use a solution x∗ = σRMVC (p,G) to the LP (3) to
construct another function x∗∗ such that x∗ ≥ x∗∗ ≥ σRMVC (P,G), in this way we
can prove that σRMVC (p,G) ≥ σRMVC (P,G).

Let σRMVC (p,G) = Σv∈V x∗(v) be a solution to the LP (3) associated with Hp,
where

∑
v∈e x∗(v) ≥ 1 for any e ∈ E and 0 ≤ x∗(v) ≤ 1 for any v ∈ V . From that

we construct a function x∗∗ = Σv∈V ′x∗∗(v) on V ′ such that

x∗∗(v) =
{
x∗(v), if v ∈ V ′ ∩ V .

0, otherwise v ∈ V ′ − V .

Note that, for every e′ ∈ E ′ there is some e ∈ E such that e ⊆ e′, hence we have

Σv∈e′x∗∗(v) = Σv∈e′−ex
∗∗(v) + Σv∈ex∗∗(v)

= Σv∈e′−ex
∗∗(v) + Σv∈ex∗(v)

≥ 0 + Σv∈ex∗(v) ≥ 1.

Therefore, x∗∗ satisfies constraints ofLP (3) associatedwithHP , that is,
∑

v∈e′ x∗∗(v) ≥
1 for any e′ ∈ E ′ and 0 ≤ x∗∗(v) ≤ 1 for any v ∈ V ′. Consequently, we obtain that
x∗∗ ≥ min

∑
v∈V ′ x(v) = σRMVC (P,G). On the other hand, we have

Σv∈V ′x∗∗(v) = Σv∈V ′−V x∗∗(v) + Σv∈V ′∩V x∗∗(v)

= 0 + Σv∈V ′∩V x∗(v)

≤ Σv∈V x∗(v).

Finally, we have Σv∈V x∗(v) ≥ Σv∈V ′x∗∗(v) ≥ σRMVC (P,G), which implies
σRMVC (p,G) ≥ σRMVC (P,G). �
Theorem 9 The polynomial-time LP relaxation of MIES support measure is anti-
monotonic.

The proof is similar to that of Theorem 8. We omit the details here.
To conclude, we have shown that standard linear programming relaxations can

derive anti-monotonic support measures in hypergraph framework. In the state-of-
the-art overlap graph framework, Calders et al. (2008) proposed the Lovász θ function
(see e.g., Lovász 1979) to derive a new support measure, which is computable in time
polynomial in the order of the overlap graph vertices (occurrences) using semidefinite
programming (SDP). We will discuss the relationship of support measures derived
from LP and SDP techniques in Sect. 4.3.

123



Counting frequent patterns in large labeled graphs 1003

4.2 Bounding theorems

To explore the relationship among all the support measures within the new framework,
we investigate uniform hypergraph maximum independent edge set problem and min-
imum vertex cover problem so as to obtain the following theorems. We first study the
difference between the MIES and MVC measures.

Theorem 10 Given a pattern P, data graph G, and occurrence (instance) hypergraph
H = (V , E), we have

σMI ES(P,G) ≤ σMVC (P,G).

Proof Assume that I is a maximum independent edge set and C a minimum vertex
cover in H . For every edge e ∈ I there is a corresponding vertex v ∈ C such that v ∈ e.
Furthermore, for any e, e′ ∈ I , we have e∩ e′ = ∅, hence their corresponding vertices
in C are different. Therefore, we get |I | ≤ |C | and then we have σMI ES(P,G) ≤
σMVC (P,G). �

The above theorem shows thatMVC is larger thanMIES (that equalsMIS according
to Theorem 1).

Based on well-established results in linear programming (see e.g., Pach and Agar-
wal 2011), we obtain the following relationship between σMI S , σMVC , and support
measures created from relaxations of the corresponding linear programming problems.

Theorem 11 Given a pattern P, data graph G, and occurrence (instance) hypergraph
H, we have

σMI ES(P,G) ≤ σRMI ES(P,G) = σRMVC (P,G) ≤ σMVC (P,G).

Proof If we are given a linear program min{cT x : x ∈ R
n, Ax ≥ b, x ≥ 0}, called

the primal, its dual max{yT b : y ∈ R
m, AT y ≤ c, y ≥ 0}, where matrix A ∈ R

m×n ,
vector b ∈ R

m, c ∈ R
n . The theorem of weak duality tells us that if x∗ and y∗ are

primal and dual feasible solutions respectively, then cT x∗ ≥ bT y∗. The strong duality
theorem tell us that if there exist feasible primal and dual solutions, then they have the
same objective value (see e.g., Pach and Agarwal 2011). Since we formulate MVC
and MIES measures as solutions of primal and dual linear programs, the first and last
inequality are given by the definitions of corresponding linear programming problems.
The equality follows from the duality theorems of linear programming problems (see
e.g., Pach and Agarwal 2011). �

A key idea in Theorem 11 is that we can switch between considering the relaxations
of the maximum independent edge set and minimum vertex cover problems of a
hypergraph. In dual linear programming relaxation problems, a feasible primal solution
has a value greater than or equal to that of any feasible dual solution. Furthermore
strong duality theorem says that if the primal program has an optimal solution, so does
the dual and they have the same objective value.
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In practice, if each hypergraph vertex is contained in relatively few edges we have
a stronger bound between the original and relaxed versions of MVC. Explorations
along this direction constitute a very interesting topic for future research.

The comparison between σMVC , σMI and σMN I were examined in Theorems 5
and 7 . Putting all together, we have

σMI S = σMI ES ≤ σRMI ES = σRMVC ≤ σMVC ≤ σMI ≤ σMN I (5)

The above formula shows a series of measures that can be built in the same frame-
work and occupy different locations of the frequency spectrum.

Nevertheless, the results in Theorem 11 show that, by relaxing the original prob-
lem, we further reduce the gap between MVC and MIES/MIS. Of course, we must
emphasize that the results shown here are obtained in the relaxed problem settings. In
the next section we will explore the close relationship between MVC and MIES using
vertex cover and independent edge set theorems in uniform hypergraphs.

4.3 Approximation and hardness theorems

So far we understand the MIS/MIES measures have the highest level of intuitiveness
as it counts independent occurrences (instances) and returns the smallest count among
all measures we have discussed. Due to their being NP-hard, it is meaningful to study
approximate algorithms. In this section, we present our new discovery of hardness
theorems of MIS/MIES support measures and approximation theorems of relaxation
measures and relationship of MIES, MVC and the SDP, LP relaxations in the hyper-
graph framework. Here is a summary of our findings (assume we study the support
measures of a pattern with k nodes).

(1) First of all, we show that MIES is NP-hard with constant (in terms of k) approx-
imation algorithms (Theorem 13);

(2) The second finding is that overlap graphs fall into a category of so called (k+1)-
claw-free graph (Theorem 14), together with the fact that MIS is equivalent to
MIES, the MIS support can be approximated within a constant factor (Theo-
rem 15);

(3) The ratio between MVC and MIES is within constant k (Theorem 16);
(4) Not only standard linear programming (LP), but also semidefinite programming

(SDP) relaxation of MIES can help explore new polynomial time measures. We
compare them in the hypergraph framework and show that: (i) the integral gap
of LP is k − 1 + 1

k for k-uniform hypergraphs (Theorem 17); and (ii) the SDP
relaxation is strictly stronger than the LP relaxation, its integral gap is at most
k+1
2 (Theorem 18);

(5) We also analyze current overlap concepts and present a new linear-time support
measure, point out different means of utilizing overlap concepts for improving
and designing meaningful support measures (Sect. 4.4).
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4.3.1 Approximation of MIES/MIS andMVC

We start our discussions by the existence of approximate algorithms for MVC.

Theorem 12 Given a pattern P, data graph G, the MVC support measure can be
approximated within constant factor.

Proof TheMVC support measure treats each occurrence as a k-node set, hence we can
utilize results fromMVC approximation theorems in k-uniform hypergraphs. We give
a natural greedy algorithm. We first construct a maximal matching by greedily adding
edges.Then we let a vertex cover contain all vertices in each edge in this matching.
This vertex cover is a set of vertices that covers all the edges and its size is at most k
times of the size of the minimum vertex cover. �

Simple algorithms exist that provide k-approximations for MVC, however, despite
considerable efforts, state-of-the-art techniques in Holmerin (2002) show that in k-
uniform hypergraphs (k ≥ 3) it is NP-hard to approximate MVC within factor k1−ε

for any ε > 0.
In the k-uniform hypergraph setting, we can also develop constant factor approxi-

mation bound for MIES support measure.

Theorem 13 Given a pattern P, data graph G, the MIES support measure can be
approximated within constant factor.

Proof We have shown that MIES support treats each occurrence as a vertex set of size
k, and it is related to maximum independent edge set (also called maximummatching)
problem in k-uniform hypergraphs. The greedy algorithm of picking a maximal set of
disjoint hypergraph edges and including all the vertices in those hypergraph edges gives
a factor k approximation. Therefore, we conclude that constant factor approximations
exist for MIES support measure. �
Recent years, one of the best known approximation ratios for the maximum matching
problem in k-uniform hypergraph (or k-set packing) problem is k

2 + ε for any fixed
ε > 0, given by Hurkens and Schrijver (1989). It is further improved to k+1

3 + ε for
any fixed ε > 0 by Cygan (2013).

Previouswork (e.g.Wang andRamon 2012;Kuramochi andKarypis 2005) believed
that MIS cannot be approximated even within a factor of n1−o(1) in polynomial time
unless P = N P , where n is the number of vertices in the overlap graph. Because
MIS is equivalent to MIES, which is constant-approximable, it would be interesting
to study what causes this contradiction.

A key observation is that the occurrence hypergraph belongs to a special category of
hypergraphs instead of general hypergraph. The same is also true for overlap graphs. In
an occurrence hypergraph, each edge represents an occurrence and has a fixed size k.
For an edge e in a k-uniform hypergraph, there can be atmost kmutually-disjoint edges
intersect with e, that is when each overlaps with e at a distinct vertex. For example,
in Fig. 10, a three-node triangle-shaped pattern has 4 occurrences e1, e2, e3, e4. From
the occurrence hypergraph in Fig. 10, we can tell that it is impossible to have a fifth
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Fig. 10 An example with a 3-node pattern within a 9-node data graph shows that the k-uniform MIES
problem can be mapped to MIS on a (k+1)-claw-free graph. In this case, we have k=3

occurrence intersecting e1 and being independent from e2, e3, e4. As a result, overlap
graphs are not general graphs either. In overlap graph, an edge is a vertex and all
other edges intersecting it become its neighbors (adjacent vertices). Hence although a
vertex in overlap graph can have any number of neighbors, the maximum number of
mutually independent (non-adjacent) neighbors is k. It turns out that overlap graph is
in the category of the so-called “claw-free” graph.

A claw is a complete bipartite graph. A claw-free graph is a graph that does not have
a claw as an induced subgraph. In other words, a graph is claw-free if no vertex has
three pairwise non-adjacent neighbors. A k-claw graph consists of a center node that
is adjacent to k mutually independent vertices, and it is also known as the complete
bipartite graph, denoted as K1,k . It is a generalization of claw—in this sense, a claw
is equivalent to a 3-claw.

In what follows, we give a generalization of claw-free graph.

Definition 29 A graph is k-claw-free if and only if it does not contain the complete
bipartite graph K1,k+1 as an induced subgraph, where Kn,m is the complete bipartite
graph on n and m vertices.

Theorem 14 Let P be a pattern with k nodes, and G a data graph. The overlap graph
of occurrences or instances of P in G is in the category of (k + 1)-claw-free graph.

Proof From the above discussion we know that for a pattern of k nodes, an occurrence
(denoted as vertex) in its overlap graph can intersect with at most k mutually-
independent occurrences (vertices), which means its overlap graph does not have
K1,k+1 as an induced subgraph. That is to say, the overlap graph of a pattern of k
nodes is not a general graph, it is in the category of so-called (k + 1)-claw-free graph.

�
Figure 10 shows the overlap graph of a pattern of three nodes is (k + 1)-claw-free,

where k is 3.
Now we can conclude that an overlap graph is a (k + 1)-claw-free graph. On the

other hand, (k+1)-claw-free graphs is more general than the overlap graph of k-node
pattern. We have an example in what follows.

In graph theory, a cycle graph be a graph that consists of a single cycle (in other
words, all its vertices are connected in a closed chain). We use Cn to denote the cycle
graph with n vertices. A wheel graph Wn+1 is formed by joining a single vertex to all
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Fig. 11 The wheel graph W8
here is 4-claw-free but it does
not correspond to the overlap
graph of any 3-node pattern in a
data graph

v0

v1
v2

v3

v4

v5
v6

v7

vertices of a cycle of length n (note that some authors use Wn to denote this type of
wheel graph). We shall consider the wheel graph W2k+2, which is obtained by adding
a new vertex and joining it to all vertices of the an odd cycle C2k+1 of length 2k + 1.
As shown in Fig. 11, a cycle is formed by chaining vertices v1, v2, v3, v4, v5, v6, v7.
After adding v0 to it, and connect it with all other vertices, we obtain a wheel graph
W8.

A W2k+2 wheel graph is (k + 1)-claw-free because the size of any independent set
is at most k which makes it impossible to find a center vertex joining k + 1 mutually
independent vertices.

A W2k+2 wheel graph however cannot be an overlap graph of any pattern in a
data graph. The largest complete subgraph in the overlap graph is a triangle, which
includes two adjacent vertices on the cycle and the center vertex. Disjoint triangles
should not include the same vertices, otherwise extra edges should be added into the
overlap graph. Therefore such W2k+2 wheel graph cannot be overlap graph of any
k-node pattern in a data graph. Hence, overlap graph is a subclass of (k+1)-claw-free
graph, and we should study overlap graph within the area of (k + 1)-claw-free graph,
not general graph.

After showing that the overlap graph as a special class of graph, one can see why
MIS measure should not be as hard as a general maximum independent set problems.

Theorem 15 Given a pattern P, data graph G, the MIS support measure can be
approximated within constant factor.

Proof BecauseMIS andMIES are found to be equivalent by Theorem 1, andMIES can
be approximatedwithin constant factor k (if the pattern P has k nodes) by Theorem 13,
we can conclude that MIS also has constant approximation ratio. �

In the k-uniform hypergraphs, we are able to find not only constant approximation
ratios but also bounds between different support measures.

Theorem 16 Given a pattern P containing k nodes, data graph G, we have

σMI ES(P,G) ≤ σMVC (P,G) ≤ k · σMI ES(P,G).

Proof The first part of the formula can be easily derived from well-established results
of Duality Theorem.
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Consider a maximal independent edge set I of H . Let X be the set of vertices
contained in the edges of H and τ be the cardinality of maximum independent edge
set. Because every edge has size k, the size of set X is at most k · τ . (Otherwise, those
edges are not independent).

Because X is the set of all vertices in this hypergraph, X intersects with every edge
which means X is a vertex cover. Therefore, the cardinality of minimum vertex cover
is less than that of X , beside we know that σMVC is the cardinality of minimum vertex
cover, τ is assumed to be the maximum independent set size which is equal to σMI ES ,
the cardinality of X is at most k · τ , hence σMVC ≤ k · σMI ES . �
The above theorem shows that, although MVC is larger than MIES, the gap between
MVC and MIES/MIS is within a constant factor k. This is also an interesting and
encouraging finding that basically shows the MVC defined in the hypergraph frame-
work is actually close to MIS.

4.3.2 Maximum ratios of relaxations of MIES

Because MIES and MVC are NP-hard to compute, the relaxation techniques are of
practical importance. In the past years, based on overlap graph, the standard LP and
SDP techniques were used to derive polynomial-time support measures. In relaxation
approaches, a key concept is the integrality gap which is the maximum ratio between
the solution quality of the integer program and of its relaxation. The integrality gap
enforces a limit on the approximation power of the relaxation, and different linear
programming formulations for the same problem may have different integrality gaps.

In the uniform hypergraph framework, we are able to find many exciting results
and insights. In the following, we present new relations among all support measures
in uniform hypergraph settings.

Theorem 17 For any k-node pattern, the maximum ratio between support measure
derived from LP and MIES is k − 1 + 1

k .

Proof Because MIES support treats the occurrence hypergraphs as k-uniform hyper-
graphs, the proof follows from the result that the integrality gap of LP is k − 1+ 1

k for
k-uniform hypergraphs (Füredi et al. 1993). An algorithmic proof in Chan and Lau
(2010) shows that this bound is tight. �

In overlap graph framework, Calders et al. (2008) proposed the Lovász θ function of
overlap graph to derive a polynomial-time relaxation support measure. If one can show
that support measures derived from such SDP are anti-monotonic, then theorems in
the k-uniform hypergraph field tell the relationships of support measures constructed
from LP and SDP. We obtain maximal ratios and interesting interpretations of rela-
tions of such measures from uniform hypergraph theory. The study in Chan and Lau
(2010) viewed the maximum independent edge set problem as the independent set
problem in a (k + 1)-claw-free graph and made the connection between the linear and
semidefinite programs in k-uniform hypergraphs which bounded the integrality gap
of a semidefinite programming relaxation (the Lovász θ function) for the k-uniform
hypergraph matching problem.
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k

MIES(MIS) SDP (Lovász θ) LP MVC

(k+1)
2

k − 1 + 1
k

Fig. 12 Ratios between MIS/MIES and its relaxations and MVC

The following theorem shows that the SDP, LP relaxations and maximum inde-
pendent edge set problem are connected via concepts of clique in overlap graph and
intersecting family in k-uniform hypergraphs.

Theorem 18 For any k-node pattern, the maximum ratio between support measures
derived from the Lovász θ function as SDP relaxation and MIES is k+1

2 .

Proof For any pattern with k nodes, its occurrence hypergraph is a k-uniform hyper-
graph. It is proven inChan andLau (2010) that theLovász θ function θ(G) is equivalent
to θ -LP, which is a stronger relaxation than the clique LP which is equivalent to
intersecting-family LP. Furthermore, the integrality gap of the intersecting-familty LP
is at most k+1

2 . Hence the proof follows from Theorem 1.5 in Chan and Lau (2010)
stating that there is a polynomial size semidefinite program for hypergraph match-
ing (maximum independent edge set) problem, with integrality gap at most k+1

2 for
k-uniform hypergraphs. �

In conclusion, we believe that SDP and LP are viable techniques for getting
polynomial-time support measures in the hypergraph framework. In addition, we dis-
cover interesting bounds and interpretation in this setting. Figure 12 shows our main
findings: SDP is strictly stronger than LP as a relaxation method, and both of them
can lead to support measures that have nice integrality gaps between MIES andMVC.

4.4 Overlap concepts in hypergraph framework

We believe by adopting the hypergraph settings, we can utilize resourceful classic
hypergraph theorems to further investigate and gain more thoughtful insights for con-
nections among support measures, or even define more support measures.

A variant of vertex overlap, called harmful overlap, was introduced in Fiedler and
Borgelt (2007).We present a new concept of structural overlap that can be compared
with harmful overlap in studying MIS-flavored support measures. Additionally, we
show how structural overlap can be used in the study of support measures.

In this section, we call the concept of vertex overlap inDefinition 12 simple overlap
to distinguish it from the two new overlap concepts.

Definition 30 (Fiedler and Borgelt 2007) A harmful overlap (HO) of occurrences f1
and f2 of pattern P exists, if ∃ v ∈ VP , such that f1(v), f2(v) ∈ f1(VP ) ∩ f2(VP ).

Definition 31 A structural overlap (SO) of occurrences f1 and f2 of pattern P exists
if ∃ v,w ∈ VP , satisfying that v andw are contained in an orbit in a subgraph of pattern
P , and f1(v) = f2(w) ∈ f1(VP ) ∩ f2(VP ).
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Fig. 13 An example showing the structural overlap is not the same as harmful overlap
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Simple overlap (f2, f3)

SO
(g1, g2) (g1, g3)

HO
(f1, f2)

Fig. 14 With the example of a 4-node pattern within a 9-node data graph, we drawVenn diagram to illustrate
the relationship among structural overlap, harmful overlap, and simple overlap

The concept of structural overlap is originated from MI support measure which
considers overlap on orbits. Take Fig. 13 as an example, when calculatingMI, because
node v2 and v3 are in an orbit, and the orbit has two images {2, 3} and {3, 4}, we getMI
= 2. However, these two images have vertex 3 in common. Now we have occurrences
g1 and g2 overlap in structural overlap sense.

In addition, we use Figs.13 and 14 to show that structural overlap and harmful
overlap are different concepts. For example, although structural overlap of g1 and g2
exists, harmful overlap of them does not exist. The reason is that g1(VP ) ∩ g2(VP ) =
{3}, but 3 is an image of two different nodes v2, v3 where g1(v3) = 3 and g2(v2) = 3.
On the other hand, a harmful overlap of f1 and f2 exists but no structural overlap of
them exists. We state that both harmful overlap and structural overlap implies simple
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overlap, and there are cases when simple overlap exists but neither harmful overlap
nor structural overlap exists (e.g., f2 and f3 in Fig. 14). Harmful overlap and structural
overlap can exist at the same time (e.g., g1 and g3 in Fig. 13).

Fiedler and Borgelt (2007) explain that some type of overlap of two occurrences
should not be considered harmful. According to the definition of harmful overlap, for
a pattern P = (VP , EP ), if a simple overlap of its two occurrences f1 and f2 exist
and there is at least one node’s images are in both of node images f1(VP ) and f2(VP ),
a harmful overlap of f1 and f2 exists. A similar argument applies to our structural
overlap concept. When a simple overlap exists, in addition if two nodes are in an
orbit in a subgraph of P and their images are in both images f1(VP ) and f2(VP ),
a structural overlap of f1 and f2 exists. That is to say structural overlap addresses
more on topological structure of the pattern which is at the core of graph isomorphism
problem.

The common ground of harmful overlap and structural overlap is that both are
weaker concepts compared to simple overlap. Hence, like harmful overlap, the concept
of structural overlap can also be used in various ways to explore frontiers of support
measure theory.

One possible direction is that, instead of simple overlap, one can use structural
overlap to decide whether two occurrences (instances) overlap, and then proceed to
construct overlap graph. The resulted overlap graph is sparser (i.e., with fewer edges)
than the one generated from simple overlap. Consequently, one can useMIS,MCP, and
other overlap graph based measures to obtain count of pattern occurrences (instances).

The other direction is motivated by the close connection of overlap concepts to MI
support measure, various overlap concepts can be potentially used to explore variants
ofMI supportmeasures.We analyze harmful overlap to explore new supportmeasures.
By definition, harmful overlap requires the existence a node v ∈ VP , such that f1(v),
f2(v) ∈ f1(VP ) ∩ f2(VP ). Hence it is stricter than simple overlap because the latter
only requires f1(VP )∩ f2(VP ) �= ∅.MI is derived from symmetric character of pattern
nodes; however harmful overlap does not utilize topological structure of graph. One
way of detecting harmful overlap is to check the images of nodes with the same labels.
It is also a generalization of MI support. Hence we can define a variant of MI as
follows:

Definition 32 Given a pattern P = (VP , EP ), a data graph G = (V , E), let T be a
subset of VP such that all nodes in T have the same label, the collection of all such
T is denoted as T = {T }. The harmful overlap minimum instance based support
(HO-MI) of P in G is defined as

σHO−MI (P,G) = min
T∈T

c(T ).

Let us revisit the example in Fig. 14: the pattern has same-labeled node subsets {v1},
{v2}, {v3}, {v4} and {v1, v4}, hence σHO−MI (P,G) = 1.

The intuition behind the design of this new support is that occurrences are likely to
overlap at the images of same-labeled nodes. Even if we group nodes with different
labels together as a node subset, the image count of this node subset is not smaller
than that of any subsets.
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Pattern: v1 v2 v3 v4

f1:
f2:

1 2 3 4
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2 2 2 2# of images:
MI = min(2,2,2,2) = 2
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HO-MI = min(2,2,2,2,1) = 1

Fig. 15 HO-MI is a new variant of MI derived from harmful overlap. Here we show an example of the
calculation of MI and HO-MI by using the same pattern and data graph mentioned in Fig. 14

Theorem 19 Given a pattern P and a data graph G, assume that P has m occurrences
in G, for a pattern node set T ⊆ VP containing nodes with the same label, if one
add any node v0 with a different label, its image count c(T ) under the mappings
{ f1, f2, . . . , fm} is lesser than or equal to its image count c(T∪v0)under themappings
{ f1, f2, . . . , fm}.
Proof Assume that c(T ) = l, and f1(T ), . . . , fl(T ) are l mutually distinct images. If
we can show that f1(T ∪ v0), . . . , fl(T ∪ v0) are also mutually distinct images, then
we obtain that c(T ) is lesser or equal to the image count c(T ∪ v0).

For any two images among f1(T∪v0), . . . , fl(T∪v0), say f1(T∪v0) and f2(T∪v0),
if f1(T ∪v0) is identical to f2(T ∪v0) then f1(v0) ∈ f2(T ) and f2(v0) ∈ f1(T ). This
is a contradiction to the fact that the label of v0 is different from that of nodes in T . �
For example in Fig. 15, nodes v1 and v2 have different labels, their image sets do
not intersect. From Theorem 19 we know that when designing any variant of MI,
we can only use count of images of nodes with the same label, therefore it makes
the calculation of support measure efficient. Theorem 19 tells us that investigation of
pattern structures and features are necessary for developing efficient support measures,
randomly group pattern nodes together and count their images under occurrences is
not the optimal solution.

This new support measure has similar main properties as the MI support.

Theorem 20 The HO-MI support measure is anti-monotonic.

Proof Given pattern p = (Vp, Ep) and its superpattern P = (VP , EP ) in data graph
G, we assume that p hasm occurrences { f1, f2, . . . , fm} inG and P has l occurrences
{ f ′

1, f ′
2, . . . , f ′

l } in G.
Assume that σMI (p,G) = minT∈T c(T ) and σMI (P,G) = minT∈T ′ c′(T ).

Because Vp ⊆ VP , we have T ⊆ T ′. Therefore minT∈T c′(T ) ≥ minT∈T ′ c′(T ).
Since any f ′

i is an extension of some fi which implies f ′
i (T ) = fi (T ), ∀ T ∈ T .

Therefore minT∈T c(T ) ≥ minT∈T c′(T ) ≥ minT∈T ′ c′(T ).
Hence we have σHO−MI (p,G) ≥ σHO−MI (P,G). �

Theorem 21 The HO-MI support measure is linear-time computable.
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Proof By definition σHO−MI (P,G) = minT∈T c(T ), T is subset of VP , hence the
number of T for pattern P is a function of the number of pattern nodes. It implies that
calculating c(T ) costs O(n) time where n is the number of occurrences. Therefore,
σMI is linear-time computable. �
Theorem 22 Given a pattern P and data graph G, we have

σHO−MI (P,G) ≤ σMN I (P,G).

Proof The MNI support can be written as σMN I (P,G) = minW∈W c(W ), where W
= {{v} : v ∈ VP }. Because W ⊆ T , we have σHO−MI (P,G) = minT∈T c(T ) ≤
minW∈W c(W ) = σMN I (P,G). �

Because HO-MI is a variant ofMI, it is not surprising that HO-MI is an upper bound
of MVC.

Theorem 23 Given a pattern P and data graph G, we have

σMVC (P,G) ≤ σHO−MI (P,G).

Proof Assume that pattern P = (VP , EP ) has m occurrences { f1, f2, . . . , fm}. Since
σHO−MI (P,G) = minT∈T c(T ), there must be one same-label node subset that
achieves this minimum count σHO−MI . It follows from Theorem 7 that for any node
subset as T , and its images as { fi (T ), i = 1, 2, . . . ,m}, and a minimum vertex cover
C of { fi (T ) : i = 1, 2, . . . ,m}, we have |C | ≤ |{ fi (T ) : i = 1, 2, . . . ,m}|.

Hence σMVC (P,G) ≤ σHO−MI (P,G). �
From the fact that nodes in the same orbit are of the same label, we conclude that
HO-MI counts images of a boarder range of node subsets hence its value should be
smaller than that of MI.

Theorem 24 Given a pattern P and data graph G, we have

σHO−MI (P,G) ≤ σMI (P,G).

Proof Because nodes in one orbit have the same label, it follows from their definition
that σHO−MI (P,G) ≤ σMI (P,G). �

In conclusion, structural overlap differs from harmful overlap by considering over-
lap at images of symmetric pattern nodes. To sum up, we believe that the concepts of
overlap should reflect how occurrences share the same vertices in different ways, and
we shall explore potential applications of them in designing and improving support
measures in the future.

5 Experiments

Asmost of the findings in this paper are supported by rigorous proof, our experimental
evaluations focus on the actual performance of MI, MVC, and polynomial-time MVC
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Table 3 Graph datasets used in our experiments

Dataset Total Edges Total Vertices Description

Crime 1380 1476 Interaction

Euroad 1174 1417 Infrastructure

FAA 2615 1226 Routes Database

Figeys 6452 2239 Protein network

PowerGrid 4941 6594 Infrastructure

Protein 1870 2277 Protein network

Stelzl 6207 1706 Protein network

Vidal 6726 3133 Protein network

in comparison to existing support measures MIS and MNI. Specifically, we study the
actualmeasure counts returned and the computational time, in attempt to get insights on
the gaps between neighboring support measures shown in Eq. (5). For convenience, we
denote polynomial-time MVC as RMVC. Recall that MIS gives the most reasonable
measure but its computation is a NP-hard problem. MNI could return a value that is
significantly higher than MIS but it can be solved in linear time.

We invested much efforts into the implementation of a comprehensive framework
for studying different support measures in the hypergraph setup. As input, the frame-
work takes a pattern, a data graph, and generates a list of its occurrences in the data
graph in the form of DFScode, which represents the DFS lexicographic order of the
pattern (Yan and Han 2002). We obtain occurrences by using the DistGraph approach
introduced in Talukder and Zaki (2016). We implemented the following support mea-
sures: MNI, MI, MVC, RMVC, and MIS. In particular, we implement RMVC and
MVC by using the Cplex package, which is a commercial software for optimization
problems (IBM 2011). We use Nauty library (McKay and Piperno 2014) for finding
isomorphism in the MI implementation. All of our code can be downloaded via a
Github folder (Pitaksirianan 2019). We run all of our experiments in a workstation
running Linux (Ubuntu 18.04 LTS) with an Intel i9-7920X 12-core CPU and 94GB
of DDR4 2666-MHz memory.

Data Graphs We use eight different datasets for our experiments (Table 3). All
datasets are collected from real-world applications and acquired from the well-known
KONECT (Kunegis 2018) website. Note that the graph sizes are on the smaller side by
today’s standards. While our new support measures can process much bigger datasets,
the long-running time of the NP-hard MIS means a comparative study is impossible
under large datasets.

Patterns To generate patterns, we set a frequency cutoff according to MNI (being the
largest support measure) for the data graph. We report five measures (i.e., MI, RMVC,
MVC, MNI, and MIS) for EVERY pattern in the dataset with an MNI value higher
than that cutoff. The cutoff is set to a relatively small number to ensure we study a large
number of patterns therefore the workload is not biased towards particular patterns.

123



Counting frequent patterns in large labeled graphs 1015

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0  0.2  0.4  0.6  0.8  1

Crime

N
um

be
r 

of
 P

at
te

rn
s

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  0.2  0.4  0.6  0.8  1

Euroad

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  0.2  0.4  0.6  0.8  1

FAA

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0  0.2  0.4  0.6  0.8  1

Figeys

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  0.2  0.4  0.6  0.8  1

PowerGrid

N
um

be
r 

of
 P

at
te

rn
s

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.2  0.4  0.6  0.8  1

Protein

 0

 50

 100

 150

 200

 250

 0  0.2  0.4  0.6  0.8  1

Stelzl

 0

 200

 400

 600

 800

 1000

 1200

 0  0.2  0.4  0.6  0.8  1

Vidal

Fig. 16 Distribution of the relative values of RMVC to MIS (lower bound) and MVC (upper bound) for all
patterns visited in different datasets. Here the value 0 on the x axis means RMVC returns the same value
as MIS, and 1 means RMVC is the same as MVC

5.1 Experimental results

For comparisons, we present counts returned in relation to those returned by other
measures as follows:

R = σX − σA

σB − σA
(6)

where X is the value of a support measure to be studied, A is a measure whose counts
serve as the lower bound, and B the higher bound. Thus, an R value close to 1 (0)
means that measure returned by X is close to that of B (A). We report the results for
all frequent patterns we encountered in each dataset. Following Eq. (5), we study the
new support measures RMVC, MVC, and MI, each with its two immediate neighbors
in Eq. (5) as lower and upper bounds.

In theory, we have MIS ≤ RMVC ≤ MVC, our results support these bounding
theorems. We first compare RMVC with MIS and MVC. We show the distribution of
the R values among all considered patterns in relation toMVC (upper bound) andMIS
(lower bound) in Fig. 16. In particular, the distribution is plotted as a histogram with
0.05 as the bucket width. The exciting news is that, for most of the patterns, RMVC
returns the same value as MIS (i.e., R = 0). There are very few patterns for which
RMVC is the same as MVC (except for the ‘Protein’ and ‘Figeys’ datasets), and even
fewer patterns go between MIS and MVC.

According to Fig. 17, MVC returns a significantly smaller value than MI in most of
the cases. In all eight datasets, there is big percentage of patterns that show the same
value for MVC and RMVC. On the other hand, there are cases where we found MVC
to be the same as MI, but they are less popular—only in three datasets FAA (20%),
PowerGrid (30%), and Vidal (2%). For all datasets, there are a big percentage of cases
in which the value of MVC goes between RMVC and MI. The experimental results
support the fact that RMVC ≤ MVC ≤ MI.
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Fig. 17 Distribution of the relative values of MVC to RMVC (lower bound) and MI (upper bound) for all
patterns visited in different datasets
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Fig. 18 Distribution of the relative values of MI to MVC (lower bound) and MNI (upper bound) for all
patterns visited in different datasets

By looking at Fig. 18, however, we found that, in most of the cases, MI is equal to
MNI (i.e., R = 1). The only exception seems to be the Crime and Protein datasets,
there are 40% of the patterns in Protein and 57% of the patterns in Crime with a MI
value smaller thanMNI. Further investigation of the patterns involved show the reason
behind such a phenomenon: MI takes advantage of a pattern’s topological structure to
reduce overestimation. However, for most of the datasets, the patterns do not show a
symmetric form therefore the returned counts are the same as MNI.

Wemust emphasize that our bounding theorems are supported by the experiments—
we never encountered cases that violate such theorems. As a special note, in the above
three figures, we did not report that cases where σX = σA = σB (i.e., quantitiy R
is undefined). However, such cases are rare (less than 5% in all plots) therefore their
absence does not change the big picture.
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Fig. 19 Time to compute different support measures

Computational efficiencyWe report the computational time of generating the support
measures in Fig. 19. We report time for all patterns with up to 100,000 occurrences
each. We do not record the time for generating the pattern occurrences, as that is the
same for all measures. This is also the convention followed by all published work in
this topic. Note that we report MIS running time (left subfigure of Fig. 19) for only
up to 10,000 occurrences because the time is nonpolynomial. As a result, it is many
orders of magnitude slower than that for other support measures. According to Fig. 19
(right subfigure), MNI and MI are truly efficient given the linear complexity. On the
other hand, it takes much more time to compute MVC and RMVC. The interesting
observation is: althoughMVC is an NP-hard problem, CPLEX seems to be reasonably
fast in computing it. It is known that CPLEX uses the Simplex algorithm to solve linear
programming problems, although the problem is worst-case exponential, Simplex can
often deliver polynomial-time solutions for average cases (Spielman and Teng 2004).
By comparing RMVC andMVC, as expected, the time for computing RMVC is much
shorter than that for MVC. The difference between the linear-time MI and MNI is
insignificant.

In summary, our experiments show thatMVC can reduce the overestimation seen in
MNI and MI with a reasonable computational overhead. RVMC stands out as a clear
winner—it returns counts very close to that of MIS yet only requires polynomial time
to compute. The improvement of MI over MNI is less exciting, as it heavily depends
on the topological features of the patterns to show its advantage.

6 Related work

The frequent subgraph mining (FSM) problem is to find subgraphs in a data graph,
and then enumerate all subgraphs with support (or frequency) above some minimum
support threshold. FSM can be divided into two categories: finding frequent patterns
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in transactional data graph (a graph database comprising multiple small graphs) and
a single large data graph.

6.1 Mining algorithms

In the past years, fruitful graph mining algorithms have been published in the graph-
transaction setting: a few representative publications include Borgelt and Berthold
(2002), Yan and Han (2002), Yan and Han (2003), Inokuchi et al. (2003), Hong et al.
(2003), Huan et al. (2003) and Kuramochi and Karypis (2004a). Although FSM in a
single large graph setting has been studied (e.g., Kuramochi and Karypis 2005, 2004b;
Elseidy et al. 2014), it receives less attention. The reason is that it is more challenging
in both stages of finding pattern occurrence in large data graph and computing support.

6.2 Support measures

Related to the problem of support counting in a single graph setting, currently there are
two major approaches. The first one is well-established overlap graph based support
measure introduced in Vanetik et al. (2002) and its formal definitions were given in
Vanetik et al. (2006) together with proofs for the sufficient and necessary conditions
required for overlap graph based measure to be anti-monotonic. Several variations
and extensions of overlap graph based measure were also proposed and analyzed,
including exact and approximate MIS measures presented by Kuramochi and Karypis
(2005), and overlap graph basedMCP by Calders et al. (2008). In Calders et al. (2008),
the authors also proposed the Lovász measure (SDP) by using the Lovász θ function
that is bounded between MIS and MCP in overlap graph. There is another measure
named Schrijver graph measure presented in Wang et al. (2013) that is very similar in
nature to Lovász measure.

A relaxation of overlap graph based MIS is given byWang and Ramon (2012). The
concept of hypergraph is used inWang andRamon (2012) to define a variant of overlap
graph (Vanetik et al. 2002) by replacing cliques by hypergraph edges and deleting non-
dominating hypergraph edges. Hence it is still overlap-graph-based method in which
vertices denote pattern occurrences or instances, and edges represent overlaps.

In Kuramochi and Karypis (2005), a greedy algorithm named GMIS is used as
upper bound MIS. GMIS picks a vertex of the minimum degree, deletes that vertex
together with all its adjacent vertices from the graph, and repeats this process until the
graph becomes empty. In particular, for a graph G with a maximum degree Δ and an
average degree d, the size |I | of the MIS satisfies the following

|I | ≤ min

(
Δ + 2

3
|GMI S(G)|, d + 2

2
|GMI S(G)|

)

where |GMI S(G)| is the size of the approximate MIS given by the GMIS algorithm.
In Calders et al. (2008), for the purpose of studying support measure in graph

mining, subgraph isomorphism is extended to homomorphisms, isomorphisms and
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homeomorphisms on both labeled and unlabeled, directed and undirected graphs, for
both vertex and edge overlap.

Three ideal properties of a frequency measure have been concluded in Wang and
Ramon (2012): (1) Anti-monotonic (we have investigated this property in this article);
(2) Normalized: if for every pattern which has only independent images in a database
graph, its support in that database graph equals the number of images. Independent
images mean that they do not overlap according to some notion of overlap, such
as sharing a vertex or an edge. (3) Statistical soundness: the function should give a
measure of the number of independent observations of a phenomenon (the pattern).
With this paper focusing on (1), (2) and (3) are obviously interesting topics for future
research within the hypergraph framework. Earlier, Calders et al. (2008) has shown
that overlap-graph-based support measures MIS, MCP and Schrijver are normalized.

7 Conclusions and future work

In this paper, we propose a new framework for studying support measures in frequent
subgraph mining. This framework transforms pattern and data graph into hypergraphs
containing occurrences and instances of the pattern as well as information of the
original graph, in contrast to existing overlap graph techniques that only contain the
former. Under the new hypergraph setting, encouraging results are achieved including
the newly-defined linear-time MI and its variants that returns counts closer to number
of independent pattern instances, the MVC measure that is very close to the MIS,
and the MIES measure that is an equivalent version of MIS under the hypergraph
framework.

Moreover, as for well accepted belief that MIS is NP-hard and cannot be approxi-
mated within a constant factor unless P = NP, we show that if the a pattern has k nodes,
overlap graphs of pattern occurrences (instances) are actually in a subcategory of so
called (k + 1)-claw-free graph, and the MIS support can be approximated within a
constant factor. The ratio between MIES andMVC is also within constant k. From the
k-uniform hypergraph theory, it is clear that the SDP relaxation is strictly stronger than
the LP relaxation of MIES. The integrality gap of LP relaxation of MIES is k−1+ 1

k ,
while that of SDP relaxation of MIES is at most k+1

2 .
For future research, in the hypergraph-based framework, there are abundant oppor-

tunities for interesting theoretical and experimental research. In particular, explorations
in the following directions are worth immediate attention. (1) Further investigation of
support measures in hypergraph settings is promising since in this paper we only uti-
lize the k-uniform property of the occurrence (instance) hypergraph to analyze the
hardness and bounds of support measures, however the features such as pattern vertex
labels have not been considered so far; (2) new overlap concepts can be investigated,
as we have briefly mentioned in Sect. 4.4; (3) more support measures can be designed
to fill the gap between MVC and MI via the subedge (subset) approach. For example,
it would be useful to have a support measure with super-linear time complexity and
counts smaller than MI; We can also explore the design of variations of MI that utilize
amultitude of topological properties of pattern to find coarse-grained node subsets; (4)
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It is also possible to include other desirable features in the design of support measure.
One important example is called additiveness, meaning the computing can be done in a
parallel manner therefore it brings great value to the implementation of the theoretical
results; (5) More user control can be introduced into the framework in defining and
selecting support measures for different applications.
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